If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120x^2-1530x+2025=0
a = 120; b = -1530; c = +2025;
Δ = b2-4ac
Δ = -15302-4·120·2025
Δ = 1368900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1368900}=1170$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1530)-1170}{2*120}=\frac{360}{240} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1530)+1170}{2*120}=\frac{2700}{240} =11+1/4 $
| -9.97+7.3m=18.65+9m-19.44 | | P-4=-90+3p | | 9x-3+30+x=180 | | 16x+2x-16x=16 | | 3/8(x+43)=21,x | | 7^19-3x=7^8x-3 | | 2u-10=u+6 | | 9x-3+30=180 | | b+7= | | 18x-11x-7x+5x=15 | | 7d-63=14 | | 2x+-5=x+11=90 | | -4(v+390)=-448 | | 25.12=1/3(12.5h) | | 2x+-5=x+11+90 | | 7a-60=a | | 3x+9=x-15 | | y=4/20.60 | | 6g+7=19 | | 6(a-84)=24 | | 20x+2x-2x=-20 | | 3x+9=x-x-15 | | 7p+80=3p+40 | | -3(q+-8)=-30 | | 7x+-20x-x+x+16x=6 | | 2x+8=36 | | H=-2t+25 | | 4t+10=40 | | 10x-4x+4x-6x=16 | | 4^2x-1=121 | | 4z-17=32 | | 32=4z-17 |